
EPOS2 P programmable positioning controller Summary

EPOS2 P 24/5 (programmable)

- IEC 61131-3 programmable
- CANopen Master function
- Multiple axis systems via CAN Bus CANopen
- Point to point control unit (1 axis)
- Interpolated Position Mode (PVT)
- DC and EC motors up to 120 W
- 6 digital inputs (TTL and PLC level)
- 4 digital outputs
- 2 analog inputs (12-bit ADC)
- compact design

Details page 334

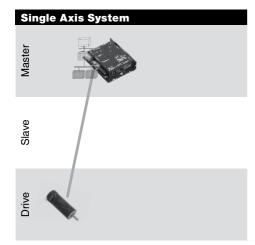
Standalone operation, programmable from PC via RS232 or USB 2.0 with standard IEC 61131-3. Program languages (ST, IL, FBD, LD, SFC). CANopen master function for controlling other axes. Standard motion control library. Supervisory Control and Data Acquistion for monitoring and controlling a process via RS232; USB 2.0 or CANopen.

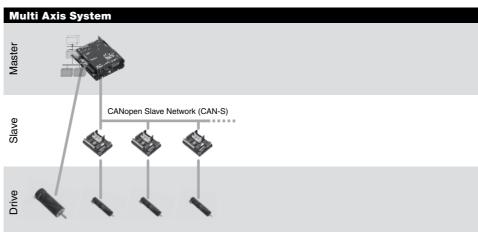
Typical applications:

- Work equipment manufacturing
- Tool building
- System automation tasks

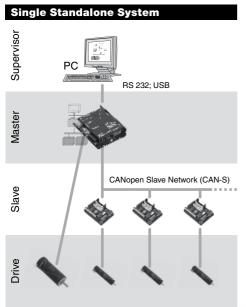
Part Number

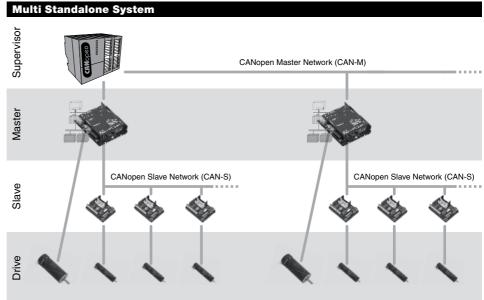
EPOS2 P 24/5 378308


EPOS2 P is a freely programmable positioning controller with an integrated power stage, based on the EPOS2 slave version. It is suitable for brushless and brush DC motors with incremental encoder and up to 120 watt output.


Standalone drive systems

With self-compiled programs, the standalone version of EPOS2 can autonomously control single and multiple axis systems dispensing with the need for a superior intelligent control unit.


Via the CAN Bus all axes can be coordinated simultaneously. The combination with maxon motors produces drive systems for highly dynamic movements.


Standalone

Supervisory Control

332 maxon motor control May 2013 edition / subject to change

Technology

The programming of applications complies with IEC 61131-3 standard. A non-volatile flash memory is used for saving. The three-stage code optimization produces IEC 61131-3 programs adjusted for the application's needs; optimized by memory, performance or a combination of both.

EPOS Studio - programming according to IEC 61131-3

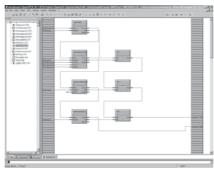
Editors (ST, IL, FBD, LD, SFC) of the powerful "EPOS Studio" tool are available for programming according to IEC 61131-3. The integrated project browser shows all network resources. Complex programs with a large number of decentralized controls can be optimally managed with it. Drive systems are configured and networked quickly using intelligent step-by-step wizards.

Motion control library

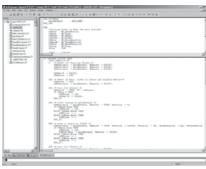
The complexity and development costs of drive systems are substantially reduced. The Motion Firmware Library was implemented according to the widly-used Motion Control Standard. Standardized function blocks make implementation easy.

maxon utility library

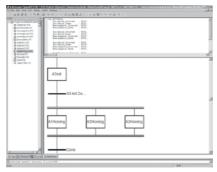
Thanks to the additional maxon user library, the programming of recurring motion control tasks is simplified. By means of the "Best Practice" programs and the numerous applications examples, purposeful IEC 61131-3 application programs can be compiled.


Technical data page 334

Performance features


- 32 bit host processor, 60 MHz
- 1 MB memory, with 768 KB free user program memory
- typicaly 2.5 ms / 5000 lines IL
- 4 KB non-volatile memory
- Digital motion control signal processor

Software features


- Windows-based development environment
- IEC 61131-3 programming languages (ST, IL, FBD, LD, SFC)
- IEC 61131-3 standard libraries
- Motion control function blocks
- maxon utility function block library
- CANopen function block library
- User libraries
- Network variables and data exchange
- Online debugger with break points and watch variables
- Axis configuration and parameterization
- Online help

FBD Editor

ST Editor

SFC Editor

Motion firmware library

- Drive control
- Referencing (Homing)
- Speed control
- Positioning absolute and relative
- Error Management
- Parameter Handling

Motion utility library

- Inputs and Outputs
- Error Handling
- Object Dictionary Access
- Homing Parameter
- Data Handling

May 2013 edition / subject to change maxon motor control 333

EPOS2 P programmable positioning controller Data

CANOPER

USB

RS232

GU

EPOS2 P 24/5

Matched with DC brush motors with encoder or brushless EC motors with Hall sensors and encoder, from 5 to 120 watts.

Additional information

	encoder, from 5 to 120 watts.	
Controller versions		
	Master-Version (programmable)	
Electrical Data	44 041/00	
Operating voltage V _{CC}	11 - 24 VDC	
Logic supply voltage V _C (optional)	11 - 24 VDC	
Max. output voltage	0.9 x V _{cc}	
Max. output current I _{max} (<1 s)	10 A	
Continuous output current I _{cont}	5 A	
Switching frequency of power stage	50 kHz	
Sample rate of PI - current controller	10 kHz	
Sample rate of PI - speed controller	1 kHz	
Sample rate of PID - positioning control	1 kHz	
Max. speed (1 pole pair)	25 000 rpm (sinusoidal); 100 000 rpm (block)	
Built-in motor choke per phase	15 μH / 5 A	
Input	114 110 110	
Hall sensor signals	H1, H2, H3	
Encoder signals	A, A B, B I, I\ (max. 5 MHz)	
Digital inputs	6 (TTL and PLC level)	
Analog inputs	2 12-bit resolution, 0+5 V	
CANLID (CANLine de identification)	, , , , , , , , , , , , , , , , , , ,	
CAN-ID (CAN node identification)	Configurable with DIP switch 17	
Output Digital subsubs	4	
Digital outputs	4 . EVDC	
Encoder voltage output	+5 VDC, max. 100 mA	
Hall sensor voltage output	+5 VDC, max. 30 mA	
Auxiliary voltage output	V _{CC} , max. 1300 mA	
Interface	D.D. T.D (***** 445 000 h**/*)	
RS232	RxD; TxD (max. 115 200 bit/s)	
CAN	high; low (max. 1 Mbit/s)	
USB 2.0	Data+; Data- (max.12 Mbit/s)	
Indicator	and an LED and LED blood ED	
Operating/Error/Program	green LED, red LED, blue LED	
Ambient temperature and humidity r		
Operation	-10+45°C	
Storage	-40+85°C	
No condensation	2080%	
Mechanical Data	A	
Weight	Approx. 180 g	
Dimensions (L x W x H)	105 x 83 x 24 mm	
Mounting threads	Flange for M3-screws	
Part Numbers	378308 EPOS2 P 24/5	
Accessories	309687 DSR 50/5 Shunt regulator	
	Order accessories separately, see page 339	
	Order accessories separately, see page 339	

Operating modes
CANopen Profile Position, Profile Velocity- and Homing Mode
Position, Velocity and Current Mode
Path generating with trapezoidal or sinusoidal profiles
Feed forward for velocity and acceleration
Interpolated Position Mode (PVT)
Sinusoidal or block commutation for EC motors
Communication
Programming interface (Windows) via USB 2.0 or RS232
Communication via CANopen, RS232 or USB 2.0 maxon protocol

Inputs / Outputs
Free configurable digital inputs e.g. for limit switches and reference switches

Free configurable digital outputs e.g. for holding brakes

Free analog inputs

Available software EPOS Studio programming according to IEC 61131-3 IEC 61131-3 standard libraries motion control library maxon utility function block library CANopen function block library maxon utility library Application Examples Best Practice Examples Firmware

A comprehensive range of cables is available as an option. Details can be found on page 339.

334 maxon motor control May 2013 edition / subject to change